三角形内角和一定是 180°吗?(三角形内角和一定是180°吗说理题)

如果有人问你:“三角形内角和等于多少?”你肯定会不假思索地告诉他:“180°!”

假如那个人说不是180°,那么你可能会认为他无知。

其实,“三角形内角和等于180°”只是欧几里得几何学(Euclid Geometry)中的一个定理。也就是说,在欧几里得几何学里,一个三角形的内角和等于 180°,但如果跳出欧几里得几何学的范围,一个三角形的内角和就不一定等于 180°

举个栗子,地球的赤道、0 度经线和 90 度经线相交构成一个“三角形”,这个“三角形”的三个角都应该是 90°,它们的和就是 270°

三角形内角和一定是 180°吗?(三角形内角和一定是180°吗说理题)

你感到奇怪吗?你知道除了欧几里得几何(欧氏几何)学外,还有其他几何学吗?这些几何学称为非欧(欧几里得)几何学

欧式几何

想要探索非欧几何,先要了解欧式几何。欧几里得几何指按照古希腊数学家欧几里得的《几何原本》构造的几何学。有时单指平面上的几何,即平面几何。数学老师课堂上教授的就是欧式几何。它有以下几条简单的公理:

1、任意两个点可以通过一条直线连接。

2、任意线段能无限延长成一条直线。

3、给定任意线段,可以以其一个端点作为圆心,该线段作为半径作一个圆。

4、所有直角都全等。

5、若两条直线都与第三条直线相交,并且在同一边的内角之和小于两个直角和,则这两条直线在这一边必定相交。

这五条“显然”的公理是平面几何的基石,我们也是仰仗这些公理干掉了一道道几何题目。但机智的你有没有发现第五公设(平行公设)和前面的四个公设比较起来,文字叙述冗长,而且不那么显而易见,有违数学的简洁美感呢?

在《几何原本》中,证明前28个命题并没有用到这个公设,这很自然引起人们考虑:这条啰哩八嗦的公设是否可由其他的公理和公设推出,也就是说,平行公设可能是多余的。

罗氏几何的诞生

因此,一些数学家提出,第五公设能不能不作为公设,而作为定理?能不能依靠前四个公设来证明第五公设?这就是几何发展史上最著名的,争论了长达2000多年的关于“平行线理论”的讨论。

由于证明第五公设的问题始终得不到解决,人们逐渐怀疑证明的路子走得不对。第五公设到底能不能被证明?

到了十八世纪,俄国喀山大学教授罗巴切夫斯基( Lobachevsky)在证明第五公设的过程中走了另一条路。罗巴切夫斯基的爸爸“老罗”也一生致力于研究第五公设的证明,但并没有什么成果,老罗曾告诫自己的儿子“小罗”:“你不要搞第五公理了,我都研究一辈子了,都没搞出来,这简直是数学家的噩梦。”

然而小罗并没有听从老爸的建议。他提出了一个和欧氏平行公理相矛盾的命题“过直线外一点,至少可以作两条直线和已知直线不相交”,用它来代替第五公设,然后与欧氏几何的前四个公设结合成一个公理系统,展开一系列的推理他认为如果这个系统为基础的推理中出现矛盾,就等于证明了第五公设。我们知道,这其实就是数学中的反证法

三角形内角和一定是 180°吗?(三角形内角和一定是180°吗说理题)

罗氏几何符合双曲面模型

但是,在他极为细致深入的推理过程中,得出了一个又一个在直觉上匪夷所思,但在逻辑上毫无矛盾的命题。最后,罗巴切夫斯基得出两个重要的结论:

第一,第五公设不能被证明。

第二,在新的公理系统里展开的一连串推理,得到了一系列在逻辑上没有矛盾的新的定理,并形成了新的理论体系。这个理论体系像欧氏几何学的理论体系一样是完备的、严密的。

三角形内角和一定是 180°吗?(三角形内角和一定是180°吗说理题)

左:欧式几何 右:罗氏几何

这种几何学被称为罗巴切夫斯基几何学,简称罗氏几何学(Lobachevskian geometry),也是我们最早发现的非欧几何学。

罗氏几何学的公理系统和欧氏几何学不同的地方,仅仅是把欧氏几何学平行公理“过直线外一点,能并且只能作一条直线平行于已知直线”用“过直线外一点,至少可以作两条直线和这条直线平行”来代替,其他公理基本相同。由于平行公理不同,经过演绎推理却引出了一连串和欧氏几何学内容不同的新命题。

三角形内角和一定是 180°吗?(三角形内角和一定是180°吗说理题)

机智的你可能已经发现,上面这些命题和我们的直觉是矛盾的。但是,数学家们经过思考提出,可以用我们习惯的办法作一个直观“模型”来证实它的正确性。

三角形内角和一定是 180°吗?(三角形内角和一定是180°吗说理题)

拟球曲面

1868 年,意大利数学家贝特拉米发表了一篇著名论文《非欧几何解释的尝试》,证明非欧几何学可以在欧几里得空间的曲面(例如拟球曲面)上实现。他发现这里三角形的三个内角之和小于180°,这相当于给罗氏几何找到了一种有实际意义的模型。

那个时代被誉为“数学王子”的高斯也发现了第五公设不能被证明,同时也涉足了非欧几何学的研究。但高斯害怕这种理论会遭到当时教会力量的打击和迫害,不敢公开发表自己的研究成果,只是在书信中向朋友表示了自己的看法,并没有公开支持罗巴切夫斯基的新理论。

黎曼几何学

那么既然我们能把第五公里改成“过一点,有多条直线与已知直线平行”,是不是也可以改成“过一点,没有直线与已知直线平行”呢?

三角形内角和一定是 180°吗?(三角形内角和一定是180°吗说理题)

于是,有个叫黎曼的聪明人,结合欧式几何的前四条公里加上“过一点,没有直线与已知直线平行”创建了自己的几何——黎曼几何。比如,在一个球面上,过直线外一点所画的直线一定与已知直线相交。所以黎曼几何又称椭球几何

##可能会有人说地球仪上的纬线是平行的呀?!但是注意曲率展开后的纬线是弯的,纬线上任意两点最短连线不是纬线本身,当然赤道除外。球面上的直线只有大圆。##

在航海学上黎曼几何也得到了广泛应用。地球本身就是曲面的,如果使用欧式几何,只会得到错误的结论。

三角形内角和一定是 180°吗?(三角形内角和一定是180°吗说理题)

Credit:B站 肉兔君

近代黎曼几何学在广义相对论里得到了重要的应用。物理学家爱因斯坦的广义相对论中的空间几何就是黎曼几何。在广义相对论里,爱因斯坦放弃了关于时空均匀性的观念,他认为时空是弯曲的,这恰恰是和黎曼几何学的背景相似。正因为如此爱因斯坦在看到了罗巴切夫斯基和黎曼的发现之后,才会欣喜若狂,他终于找到了一种可以解释相对论的数学工具了。

三角形内角和一定是 180°吗?(三角形内角和一定是180°吗说理题)

数学的意义就在于,它经常走在其他科学的前面,我们通过数学的研究,可以为其他科学提供很多帮助。

来源:牛油果进化论

编辑:AI

近期热门文章Top10

↓ 点击标题即可查看 ↓

1. 首届黑洞PS大赛来袭!为了这张「高糊」的图,中国科学家做出了啥贡献?

2. 物理学四大神兽,除了“薛定谔的猫”还有谁?

3. 地下多大的金矿才能影响到单摆实验?| No.149

4. 为什么用木棍打衣服就可以洗干净衣服?| No.150

5. 为了替你出气,我们给讨厌的杨柳絮来个「以暴制暴」

6. 玩扫雷还有什么技巧?科学家的玩游戏方法你绝对想不到

7. 在我国,没有任何一张地图能告诉你你的真实位置

8. 在客户鱼嘴里提供服务的小清洁虾、清洁鱼,是怎么知道自己不会被吃掉的呢?

9. 你以为土拨鼠只会尖叫?其实它可能正在骂你

10. 你知道为了测博尔特的速度,我们有多努力嘛?

本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至89291810@qq.com举报,一经查实,本站将立刻删除。

(0)
上一篇 2024-12-06 下午5:27
下一篇 2024-12-06 下午5:33

相关推荐

  • 中专提前社会实践可以休学吗

    中专提前社会实践可以休学吗 随着教育的普及和技术的发展,中专学校越来越受欢迎。然而,对于某些人来说,提前社会实践可能是一个挑战。 提前社会实践是指学生在完成中专学业后,提前到社会上…

    教育百科 2024-05-30
  • 全面提升烟台初中补课的最佳选择

    全面提升烟台初中补课的最佳选择 近年来,随着教育的不断发展,烟台初中补课已成为许多学生的必要选择。然而,补课虽然可以提高学生的学习成绩,但也存在一些风险和问题。在本文中,我们将探讨…

    教育百科 2025-01-11
  • 孩子厌学对啥都不感兴趣

    孩子厌学对啥都不感兴趣 孩子们在成长过程中,总是需要学习各种各样的知识和技能,以便他们能够在这个世界上取得成功。然而,在某些时候,孩子们可能会感到厌学,对任何事情都不感兴趣。这种情…

    教育百科 2025-03-17
  • 一直沉迷手机(沉迷手机不能自拔)

    沉迷手机不能自拔 随着科技的不断发展,手机已经成为我们日常生活中不可或缺的一部分。然而,我们也发现自己越来越多的人沉迷于手机,无法自拔。这种行为不仅会影响我们的身体健康,也会影响我…

    教育百科 2024-03-18
  • 因病休学能休几年(因病休学一个月能转校吗)

    因病休学一个月能转校吗? 最近,我因为健康问题需要休学一个月,这对我来说是一个艰难的决定,因为我非常想继续学习。但是,我的学校已经决定让我休学,我该怎么办? 我考虑了很久,决定向学…

    教育百科 2024-05-06
  • 江门高级技工学校

    江门高级技工学校是一所位于广东省江门的一所高级技工学校,创建于1988年,是广东省的重点技工学校之一。学校占地面积1100亩,拥有现代化的教学设施和先进的实验室,为学生提供了良好的…

    教育百科 2024-12-24
  • 黑龙江大学休学要多久

    黑龙江大学休学要多久 休学是学生为了调整身心状态或解决某些问题而暂时离开学校的一种常见方式。黑龙江大学是一所历史悠久、声誉卓著的高校,为学生提供了优质的教育和丰富的资源。然而,休学…

    教育百科 2025-03-25
  • 意志性厌学是

    意志性厌学:一种常见的学习障碍 意志性厌学是一种常见的学习障碍,它可能会导致学生在学习过程中感到疲惫、沮丧、失去动力和兴趣。虽然这种症状在某些情况下可能是正常的,但在其他情况下却可…

    教育百科 2025-09-05
  • 休学可以不用复读吗(休学什么都没办可以复学吗)

    休学后想要复学,但什么都没办,该怎么办? 对于一些学生来说,休学可能是为了调整自己的学习状态,更好地面对未来的挑战。但是如果在休学期间没有妥善处理好相关的手续,可能会给自己带来很大…

    教育百科 2024-06-27
  • 啡瘾 网盘

    啡瘾 啡瘾是一种严重的成瘾,它可以通过使用毒品来缓解疼痛或其他症状。啡瘾可能会导致身体和心理的各种问题,并且可能会对个人和社会生活产生负面影响。 啡瘾的具体表现包括以下几个方面: …

    教育百科 2025-05-12

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注