初二垂直平分线知识点汇总

垂直平分线是初中数学会接触到的一个知识点,并且很多几何题都会涉及到垂直平分线。所以极客数学帮今天就为大家总结了关于垂直平分线的相关知识点和经典例题解析,后面还有垂直平分线的相关练习题。一起来看看吧。

初二垂直平分线知识点汇总

定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

垂直平分线的性质

1.垂直平分线垂直且平分其所在线段。

2.垂直平分线上任意一点,到线段两端点的距离相等。

3.如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。

4.线段垂直平分线上的点和这条线段两个端点的距离相等 。

逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

5.三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相 等。(此时以外心为圆心,外心到顶点的长度为半径,所作的圆为此三角形的外接圆。)

垂直平分线的逆定理

到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

注意:要证明一条线为一个线段的垂直平分线,应证明两个点到这条线段的距离相等且这两个点都在要求证的直线上才可以证明

通常来说,垂直平分线会与全等三角形来使用。

垂直平分线的性质:线段垂直平分线上的点到这条线段的两个端点的距离相等。

巧记方法:点到线段两端距离相等。

可以通过全等三角形证明。

垂直平分线的尺规作法

方法之一:(用圆规作图)

1、在线段的中心找到这条线段的中点通过这个点做这条线段的垂线段。

2、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。得到两个交点(两交点交与线段的同侧)。

3、连接这两个交点。

原理:等腰三角形的高垂直平分底边。

方法之二:

1、连接这两个交点。原理:两点成一线。

等腰三角形的性质:

1、三线合一 ( 等腰三角形底边上的高、底边上的中线、顶角平分线相互重合。 )

2、等角对等边(如果一个三角形,有两个内角相等,那么它一定有两条边相等。)

3、等边对等角(在同一三角形中,如果两个角相等,即对应的边也相等。)

垂直平分线的判定

①利用定义.

②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.(即线段垂直平分线可以看成到线段两端点距离相等的点的集合)

经典例题讲解

例1.如图,已知:在△ABC中,∠C=90°∠A=30°,BD平分∠ABC交AC于D.

初二垂直平分线知识点汇总

求证:D在AB的垂直平分线上.

分析:根据线段垂直平分线的逆定理,欲证D在AB的垂直平分线上,只需证明BD=DA即可.

证明:∵∠C=90,°∠A=30°(已知),

∴∠ABC=60°(Rt△的两个锐角互余)

又∵BD平分∠ABC(已知)

∴∠DBA=1/2∠ABC=30°=∠A

∴BD=AD(等角对等边)

∴D在AB的垂直平分线上(和一条线段两个端点距离相等的点,在这条线段的垂直平分线上).

例2.如图,已知:在△ABC中,AB=AC,∠BAC=120°,AB的垂直平分线交AB于E,交BC于F。

初二垂直平分线知识点汇总

求证:CF=2BF。

分析:由于∠BAC=120°,AB=AC,可得∠B=∠C=30°,又因为EF垂直平分AB,连结AF,可得AF=BF. 要证CF=2BF,只需证CF=2AF,即证 ∠FAC=90°就可以了.

证明:连结AF,

∵EF垂直平分AB(已知)

∴FA=FB(线段垂直平分线上的点和这条线段两端点的距离相等)

∴∠FAB=∠B(等边对等角)

∵AB=AC(已知),

∴∠B=∠C(等边对等角)

又∵∠BAC=120°(已知),

∴∠B=∠C=30°(三角形内角和定理)

∴∠BAF=30°

∴∠FAC=90°

∴FC=2FA(直角三角形中,30°角所对的直角边等于斜边的一半)

∴FC=2FB

说明:线段的垂直平分线的定理与逆定理都由三角形的全等证得,初学者往往不习惯直接使用绝无仅有垂直平分线的定理与逆定理,容易舍近求远,由三角形全等来证题.

例3.如图,已知:AD平分∠BAC,EF垂直平分AD,交BC延长线于F,连结AF。

初二垂直平分线知识点汇总

求证:∠B=∠CAF。

分析:∠B与∠CAF不在同一个三角形中,又∵∠B,∠CAF所在的两个三角形不全等,所以欲证∠B=∠CAF,不能利用等腰三角形或全等三角形的性质. 那么注意到EF垂直平分AD,可得FA=FD,因此∠FAD=∠ADF,又因为 ∠CAF=∠FAD-∠CAD,∠B=∠ADF-∠BAD,而∠CAD=∠BAD,所以可证明∠CAF=∠B.

证明:∵EF垂直平分AD(已知),

∴FA=FD(线段垂直平分线上的点和这条线段的两端点的距离相等).

∴∠FAD=∠ADF(等边对等角)

∵∠B=∠ADF-∠BAD(三角形的一个外角等于和它不相邻的两个内角的和),∠CAF=∠FAD-∠CAD,

又∠CAD=∠BAD(角平分线定义),

∴∠B=∠CAF .

说明:运用线段的垂直平分线的定理或逆定理,能使问题简化,如本例题中,EF垂直平分AD,可以直接有结论FA=FD,不必再去证明两个三角形全等.

例4.如图,已知直线l和点A,点B,在直线l上求作一点P,使PA=PB.

初二垂直平分线知识点汇总

分析:假设P点已经作出,则由PA=PB,那么根据“到线段两端点距离相等的点在这条线段的垂直平分线上”可知,点P在线段AB的垂直平分线上. 而点P又在直线l上,则点P应是AB的垂直平分线与垂线l的交点。

作法:1.连结AB.

2.作线段AB的垂直平分线,交直线l于点P.则P即为所求的点.

说明:在求作一个点时,要考虑该点具备什么样的特点,如它到一条线段的两个端点距离相等,它就在连结这两点的线段的垂直平分线上,如果它到一个角的两边的距离相等,它就在这个角的平分线上.

看完了垂直平分线的相关知识点和例题,我们来做一下有关于垂直平分线的练习题。

初二垂直平分线知识点汇总

初二垂直平分线知识点汇总

以上就是极客数学帮为大家整理的有关垂直平分线的全部内容了。

本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至89291810@qq.com举报,一经查实,本站将立刻删除。

(0)
上一篇 2024-04-23 上午11:19
下一篇 2024-04-23 上午11:25

相关推荐

  • 网瘾少年灰狼

    网瘾少年灰狼的故事 网瘾少年灰狼是一个十分特别的人。他有着一双深邃的眼睛,一头乌黑的长发和一头浓密的鬓角。他常常穿着黑色的衣服,戴着黑色的耳机,坐在电脑前面,沉迷于网络世界。 灰狼…

    教育百科 2025-04-25
  • 葫芦岛市二高中

    葫芦岛市二高中,位于辽宁省葫芦岛市东港市,创建于1958年,是中国教育部直属的全国重点大学之一,也是辽宁省重点高校。学校占地面积为100000平方米,建筑面积为60000平方米,拥…

    教育百科 2024-12-31
  • 对策厌学

    对策厌学 近年来,随着教育制度的改革和社会竞争的不断加剧,学生们面临着越来越多的压力。许多学生因此产生了厌学的情绪,这种现象已经严重影响了学生的学习效果和身心健康。那么,如何对策厌…

    教育百科 2025-04-05
  • 办理休学需要家长签字吗(办理休学需要家长陪同吗)

    办理休学需要家长陪同吗? 随着学生数量的不断增加,学校的规定和流程也在不断变化。休学已经成为许多学生的必要选择,但是在办理休学时是否需要家长陪同呢?这个问题并没有一个统一的答案,因…

    教育百科 2024-07-03
  • 抑郁症的自我治疗方法

    抑郁症是一种常见的心理疾病,它可能会对患者的生活造成严重的影响。为了缓解抑郁症的症状,患者可以通过一些自我治疗方法来改善自己的状况。这些方法包括: 1. 保持积极的心态:抑郁症患者…

    教育百科 2025-09-08
  • 写给爱玩游戏的孩子网瘾的危害

    写给爱玩游戏的孩子:网瘾的危害 亲爱的爱玩游戏的孩子: 我希望你知道,游戏虽然可以带来很多乐趣和刺激,但是过度沉迷游戏也会带来很多危害。我理解你喜欢玩游戏,但是我希望你能够控制自己…

    教育百科 2024-09-21
  • 穷人的作者

    作为一个穷人,我深知贫困对于一个人的影响。它可以让你失去尊严,可以让你被迫离开家乡,可以让你没有权利选择自己的生活。作为一个穷人,我经历过许多困难,但我从未放弃过。我相信,只要我努…

    教育百科 2024-12-25
  • 河南网瘾

    河南网瘾:一个值得关注的问题 近年来,河南成为了一个备受关注的地区,因为河南省是一个人口大省,同时也是一个经济发展较为迅速的地区。然而,河南网瘾问题也成为了一个值得关注的问题。 河…

    教育百科 2025-10-07
  • 高二能办休学手续吗

    高二能办休学手续吗? 对于学生来说,休学是一种比较常见的情况。有些学生因为某些原因,需要暂时离开学校,去进行调整和休息。那么,高二学生能不能办休学手续呢? 通常情况下,高二学生是可…

    教育百科 2025-03-23
  • 孩子厌学兴趣产生的原因一般有(孩子讨厌学科失去兴趣)

    孩子讨厌学科失去兴趣,是一种常见的现象,尤其是在现代社会中,孩子们需要面对越来越多的学科和任务,这可能会导致他们失去对学习的兴趣。如果孩子对某个学科失去了兴趣,那么这可能意味着孩子…

    教育百科 2024-03-25

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注